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String rewriting Term rewriting Graph rewriting
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String rewriting:
N
Term rewriting:

N

.
ool |
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Graph rewriting:

Challenge: lift algorithms and results: string ~ terms ~ graphs.
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—> Categorical framework

Categorical formalisms/algorithms use pushouts and pullbacks.
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Pullback-Pushout Plus (PBPO™)

L<—K—>R rewrite rule
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Fuzzy set (A, @) is a set A with a membership function a.: A — L.

ap A(E) — L

ay:A(V) = L

Morphisms f: (A, ) — (B, 8) must not decrease membership: o < S of.

Fuzzy graph (A, «) is a graph A with {

Relabelling = changing labels in rewrite step G, — Gg. (X in other formalisms)
(¢ (o [ & )
[ od [ o-d [0 o—d
L T T K L T
[ =@ ][ ¢®S@ﬁ}




Toposes




Toposes
®00000

Motivations for toposes

Theorem (Overbeek, Endrullis, Rosset (ICGT'21, JLAMP’23))
W /n quasitoposes: PBPO™ subsumes DPO, SqPO, AGREE, PBPO.

(i.e, every DPO/SqPO/..rule has a corresponding PBPO™ rule that give the same rewrite steps)
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Motivations for toposes

Theorem (Overbeek, Endrullis, Rosset (ICGT'21, JLAMP’23))
W /n quasitoposes: PBPO™ subsumes DPO, SqPO, AGREE, PBPO.

(i.e, every DPO/SqPO/..rule has a corresponding PBPO™ rule that give the same rewrite steps)
B In rm-adhesive quasitoposes: 1°t categorical termination technique
Theorem (Behr, Harmer, Krivine (ICGT'21))
W /n quasitoposes: concurrency property in non-linear SqPO.

W /n rm-adhesive categories: concurrency property in non-linear DPO.
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Toposes

“Toposes are the categorical framework for studying structures which
behave like sets” (Borceux'95).

Definition Definition

(Elementary) Toposes need (Elementary) Quasitoposes need
B finite limits (and colimits) W finite limits and colimits

B (locally) cartesian closed W locally cartesian closed

[ | : | subobject classifier.

Grothendieck topos ——— Elementary topos

I I

Grothendieck quasitopos =—=> Elementary quasitopos

Example of toposes: presheaf categories.
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Presheaves

Definition
Presheaf on category [ is a functor A : [°® — Set.
Presheaf morphism f: A = B is a natural transformation.

[op Set”” 1op Set””

E, directed

i Set
£ % Vv hypergraphs

(sizes preserved)

symg E :i:; V

. % y Graph sym - sym = id, Undirected
t (directed multi-) s-sym=t, graphs
t-sym=s.
. — s .
s directed E el % Reflexive graphs
— Sk k-uniform (or degenerate graphs)

s-refl=t-refl = idy

hypergraphs
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The Yoneda embedding y: | — Set”” is given by y(i) = I(—, ).
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Definition

The Yoneda embedding y: | — Set”™” is given by y(i) = I(—, ).

Idea: It gives the “building blocks” of presheaf categories.

op

1°° Set/ y(V) y(E)
E ;i v Graph e
t
o 1 7k
— Sk hypergraphs S

smC E 23SV
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O 000
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Fuzzy presheaves

Given category | and functor £ : I°°? — Poset:

Definition (Poset version)
L-fuzzy presheaf (A, ) consist of

B presheaf A : [°P — Set, i r St
B (ax natural transformation « : incl - A = L. \ H A
Poset

Morphism f: (A, «) — (B, 8) natural transformation with

aj < Blfh Viel®

. s = & =
ffere I E=V E—ss>5V
t —S3 >
Fuzzy presheaf Fuzzy 3-uniform

Fuzzy sets  Fuzzy graphs

category hypergraphs
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Presheaves properties

Let I be a small category. Contribution

Set E TODOS FuzzySet(L) (*)Stout'93

—>  Quasitopos
Graph = Topos FuzzyGraph(£) = Quasitopos

Set™ = Topos FuzzyPresheaf(l,£) &4 Quasitopos

(%) if (£, A, Vv, L, T,=) complete Heyting algebra.
(k) if £ : 1°P — CompHeytAlg.

Bonus: FuzzyPresheaf(l, £) is rm-adhesive.
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Definition Definition (Product of objects A, B)
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Definition Definition (Product of objects A, B)
An object 1 is terminal if V Product is object A x B with m : A x B — A,
objectA, 3! arrow A — 1. and m; : A X B — B, + a universal property.
Terminal 1 AxB
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Terminal object + Pullbacks “% "2 " 311 finite Limits
Definition Definition (Product of objects A, B)
An object 1 is terminal if V Product is object A x B with m : A x B — A,
objectA, 3! arrow A — 1. and m; : A X B — B, + a universal property.
Terminal 1 AxB
Set {} {(a,b) |aeA,be B}
@ o 0
I A
Graphs {5} x@9—0=0 0
. »
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Finite limits (colimits case is dual)

Terminal object + Pullbacks “% "2 " 311 finite Limits
Definition Definition (Product of objects A, B)
An object 1 is terminal if V Product is object A x B with m : A x B — A,
objectA, 3! arrow A — 1. and m; : A X B — B, + a universal property.
Terminal 1 AxB
Set {} {(a7 b) ‘ a €A, be B}
@ o 0
I A
Graphs {5} x@9—0=0 0
I A
) >
Presheaf 1) ={}Vviel (AxB)(i) = A(i)xB(i),Vi e |
Fuzzy set {-T} (Ax B, (a,b) — a(a)AB(b))




Proof
®00000

Finite limits (colimits case is dual)

e.g, Borceux Vol1

Terminal object + Pullbacks ™" = all finite limits

Definition Definition (Product of objects A, B)
An object 1 is terminal if V Product is object A x B with m : A x B — A,
objectA, 3! arrow A — 1. and m; : A X B — B, + a universal property.
Terminal 1 AxB
Set {} {(a7 b) ‘ a €A, be B}
L o .0
I A
Graphs {5} = X @—0 = l/‘ D
) >
Presheaf 1) ={}Vviel (AxB)(i) = A(i)xB(i),Vi e |
Fuzzy set {-T} (Ax B, (a,b) — a(a)AB(b))
pr :lwzeznv\es 1()={-"}viel ( (A0 > B(1))ier )
- e
I (a,b) — aj(a) A Bi(b)
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0, otherwise
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Subobject classifier

Definition
Subobject classifier is True : 1 — Q with Aty
ACB xa:B—Q " frue
subobjects characteristic function B TA> Q
1,ifbeA
W Set: Q:={0,1} AQB<:>XA:b+—>{ )
0, otherwise

B Graph: Q=




Proof
0@0000

Subobject classifier

Definition
Subobject classifier is True : 1 — Q with Aty
ACB xa:B—Q " frue
subobjects characteristic function B TA> Q
1,ifbeA
W Set:Q:={0,1 ACB < xa:b— )
0, otherwise
B Graph: Q=
a,b —1
c —0
1
CD} = xa: - HZO
—
5

0
— =

G
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Subobject classifier

Definition
Subobject classifier is True : 1 — Q with Aty
ACB xa:B—Q " frue
subobjects characteristic function B TA> Q
1,ifbeA
W Set:Q:={0,1 ACB < xa:b— )
0, otherwise
B Graph: Q=
a,b —1
c —0
CD} s ma HZO
—
5
O -2

B Presheaves: Q(i) = Sub(y(i)) is the set of all subpresheaves/sieves of
y(i). (generalisation of sets and graphs)
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B FuzzySet(£): X However, Q:={07,1"7} classifies regular fuzzy subsets.

{CIX} g {CIOA, b0.6}

. <~ X = 0.4
is regular
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Regular-subobject classifier

B FuzzySet(£): X However, Q= {07,17} classifies fuzzy subsets.

{CIX} g {GOA7 b0.6}

. <~ X = 0.4
is regular

Lemma
-subobject classifier fuzzy presheaves:

Q of presheaves + all elements full membership.
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CxA—B 40 c_,pgA

(adjunction)
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Cartesian closed

Definition
For objects A, B of a category, an exponential object is an object B” st.

Currying

CxA—B C — B".

(adjunction)

W Sets: B = {functions A — B}.
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Cartesian closed

Definition
For objects A, B of a category, an exponential object is an object B” st.

Currying

CxA—B C — B".

(adjunction)

W Sets: B = {functions A — B}.
B*(V) = {graph hom. {-} x A — B}

W Graphs: B = { .
B"(E) = {graph hom. {s — t} x A — B}.
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Cartesian closed

Definition
For objects A, B of a category, an exponential object is an object B” st.

Currying

CxA—B C — B".

(adjunction)

W Sets: B = {functions A — B}.
B*(V) := {graph hom. {-} x A — B

B Graphs: B ::{ A( ) {grap ) }
B*(E) := {graph hom. {s — t} x A — B}.

B Presheaves: B*(/) := {morphisms y(i) x A — B}.
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Cartesian closed

Definition
For objects A, B of a category, an exponential object is an object B” st.

Currying

CxA—B C — B".

(adjunction)
W Sets: B = {functions A — B}.
B*(V) = {graph hom. {:} x A= B
W Graphs: B* ::{ A( )= tgrap 4 )
B*(E) := {graph hom. {s — t} x A — B}.
B Presheaves: B*(/) := {morphisms y(i) x A — B}.
W Fuzzy sets: (B, B)*) = (B*,0)

0(f: A= B):= )\ (a(a) = Bf(a)).

acA
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Cartesian closed

Definition
For objects A, B of a category, an exponential object is an object B” st.

Currying

CxA—B C — B".

(adjunction)

W Sets: B = {functions A — B}.
B*(V) = {graph hom. {:} x A= B
B*(E) := {graph hom. {s — t} x A — B}.
B Presheaves: B*(/) := {morphisms y(i) x A — B}.
W Fuzzy sets: (B, B)*) = (B*,0)

0(f: A= B):= )\ (a(a) = Bf(a)).

Lemma
Fuzzy presheaves have exponential objects.
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Locally cartesian closed

Cartesian closedness stable under categorical equivalence. Hence:

Lemma (e.g., Awodey’05)
Presheaf(l) is locally cartesian closed because

Presheaf(l) /- ~  presheaf(el(D))
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Locally cartesian closed

Cartesian closedness stable under categorical equivalence. Hence:
Lemma (e.g., Awodey’05)

Presheaf(l) is locally cartesian closed because

Presheaf(l) /- ~  presheaf(el(D))

Lemma
FuzzyPresheaf(l, £) is locally cartesian closed because

FuzzyPresheaf(/,L)/(D 5) = FuzzyPresheaf(el(D, 6), £)
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Definition (Simplified)
Category is

B adhesive: if m mono, bottom PO, back PBs:

front PBs <= top PO
B rm-adhesive: if m mono, —i—:

front PBs <= top PO
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Definition (Simplified)

Category is
B adhesive: if m mono, bottom PO, back PBs: F 6
| v
front PBs <= top PO £ H
B rm-adhesive: if m mono, — 11— 1
front PBs <= top PO B—|—¢C
B rm-quasiadhesive: if —ui1—: n e
A— D
front PBs top PO
Theorem
TODOS Lack, Sobocinski ‘06 Adhesive
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Adhesivity

Definition (Simplified)

Category is
B adhesive: if m mono, bottom PO, back PBs: F 6
| Ve
front PBs <= top PO £ H
B rm-adhesive: if m mono, — 11— 1
front PBs <= top PO B—|—¢C
B rm-quasiadhesive: if —ui1—: n e
A——D
front PBs top PO
Theorem
Topos = L Adhesive

if regular subobjects closed under _ :
binary union Johnstone et al. '07 Rm aﬂdhesrve

Quasitopos — Rm — quasiadhesive
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Logic with Q

Toposes have an internal logic (Goldblatt'06, McLarty'92)

Definition
Truth values are 1 — Q (global elements).

Set: 0, 1 Graph: 0G0, <0G 1, 1G 1

Logical connectives:
False := X,

= XFalse

N = X(True,True)

= = XEq(m,A)>QxQ

V= X[(Trueq,idQ), (idQ, Trueq)]
—> Qs a Heyting algebra.

(for object X, then Truex == X511M%.Q means true in context X)
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Lawvere-Tierney Topologies

LT-topology / operator / modality talks about “locally truth”.
B Generalises “topology on a set” X

B Generalises Grothendieck topology

Definition

A LT-topology on a topos is a morphism j : Q — Q satisfying
1. joTrue = True (P = locally P)
2. joj=]j (locally locally P = locally P)
3. joA=Ao(jx])) (locally P A Q = locally PA locally Q)

Induces closure operator on subobjects: Ay »— A: Xag=a = J © Xag—A-

Subobject Ag — A is dense if Ag = A.
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Examples of topologies

Topology j Closure A C A Dense object
Trivial Trueq adds everything all
Set
Discrete iaa adds nothing only A
Graph
Closed for (s,t) (- v (s,1) adds all vertices if Ao(E) = A(E)
Dbl. negation == adds all valid edges | if Ao(V) = A(V)

0 1
W= 2 =supv) = O—C

0 (s,1) st
WH=G () = suby(E) = O 8 D)

t
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Examples of topologies

Topology j Closure A C A Dense object
Trivial Trueq adds everything all
Set
Discrete iaa adds nothing only A
Graph
Closed for (s,t) (- v (s,1) adds all vertices if Ao(E) = A(E)
Dbl. negation == adds all valid edges | if Ao(V) = A(V)
A
Illustration of ——-topology on Graph: for

Ao “AO

==/
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Separated elements

Hausdorff space B: any A 1, B determined by values on any dense Ay C A.

Definition
Topology j, object B, arbitrary j-dense m : A — A and arbitrary f: Ag — B.
Count the number of factorisations g : A — B of f through m (VAo, A, f):

B Bis separated if #g <1,

Ao
. . f
B Bis complete if #g >1, mI \
A

B B is a sheaf if #g =1. > B
g



LT-Topologies
[e]e]e] lo}

Separated elements

Hausdorff space B: any A 1, B determined by values on any dense Ay C A.

Definition
Topology j, object B, arbitrary j-dense m : A — A and arbitrary f: Ag — B.
Count the number of factorisations g : A — B of f through m (VAo, A, f):

B Bis separated if #g <1,

Ao
. . f
B Bis complete if #g >1, ’”I \
A > B

B B is a sheaf if #g =1.
g

Lemma (Johnstone '79)
For a topology,

W separated elements form a quasitopos.

W sheaves form a quasitopos.
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Separated elements and sheaves in Set, Graph, FuzzyGraph(£)

Top. Closure Ag C A Dense object Sep. elem. Sheaves
. subterminal terminal
Triv. (adds everything) all . X
objects objects
Dis. (adds nothing) only A (all) all
. 2 1)
Closed (adds all vertices) Ion(E) = A(E) <, - ;) . S
~D
- (adds all valid edges) | If Ag(V) = A(V) | simple graphs | complete graphs
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Separated elements and sheaves in Set, Graph, FuzzyGraph(£)

Top. Closure Ag C A Dense object Sep. elem. Sheaves
. subterminal terminal
Triv. (adds everything) all . .
objects objects
Dis. (adds nothing) only A (all) all
. 2 A)
Closed (adds all vertices) if Ao(E) = A(E) <, - . S
~J

=

(adds all valid edges)

Corollary (Vigna'97)
Simple graphs form a quasitopos.

Lemma

if Ao (V) = A(V)

Similarly, those also form quasitoposes:

B Simple reflexive graphs
B Simple undirected graphs .

complete graphs

B Simple k-uniform hypergraphs



Bicoloured




Bicoloured
@O0

Bicoloured graphs

°P

fe Set

E_:XV Graph

Bicoloured graphs
(— and —)




Bicoloured graphs

Set””

Graph

Bicoloured graphs
(— and —)

QB'\ColGraph

mks\Q
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4 topologies on Graph = 8 topologies on BiColGraph.
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4 topologies on Graph = 8 topologies on BiColGraph.
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onE | discc. ——- discc ——= closed closed triv. triv.
on E' | disc. disc. —-—- == closed triv. closed triv.
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Topologies on BiColGraph

Lemma

4 topologies on Graph = 8 topologies on BiColGraph.

Ji Ju Js Jo J7 Js
onE | discc. ——- discc ——= closed closed triv. triv.
on E' | disc. disc. —-—- == closed triv. closed triv.

Jo-separated el. = blue-simple graphs}

Jjs-separated el. = red-simple graphs.
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Topologies on BiColGraph

Lemma

4 topologies on Graph = 8 topologies on BiColGraph.

Ji Ju Js Jo J7 Js
onE | discc. ——- discc ——= closed closed triv. triv.
on E' | disc. disc. —-—- == closed triv. closed triv.

Jo-separated el. = blue-simple graphs}

Jjs-separated el. = red-simple graphs.

Corollary
Partially simple graphs form a quasitopos.
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Simplicial sets

Simplicial sets = graphs with triangles (2-dim), tetrahedra (3-dim), etc.

Definition
sSet = Simplicial sets = Set®”™ with
1 < d% il
o < dy Sy
AP = 0 sg> 1 < d? 2
< d) sl >
< d}

di' = face maps, s/’ = degeneracy maps satisfy simplicial identities

sSety = Semi-simplicial sets: only d; maps.
sSetS" = n-dimensional simplicial sets: only 0, ..., n.
sSet" = n-dimensional semi-simplicial sets: both.
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Simplicial identities

A is defined with totally ordered sets. A°P is defined with graphs.

Map d; omits vertex at position i: dq(vo, V1) = Vo.
Map s; duplicates vertex at position i: s1(vo, V1) = (Vo, V1, V).



Simplicial identities

Simplicial sets
[e] leJe]e]ele)

A is defined with totally ordered sets. A°P is defined with graphs.

Map d; omits vertex at position i: dq(vo, V1) = Vo.
Map s; duplicates vertex at position i: s1(vVo, va) = (Vo, V1, V1).

n+1

Si

Simplicial identities:

n+1
di

1

V dida(0,1,2) =
0 012 |02 S050(0)

dosi(1,2)

(0,2)

il

ifi < j
sf = sih's] ifi<)
sy ifi<
s’ = <{id, ifi=jori=j+1
sty ifi>j 41
(0,1) = 0 = di(0,2) = ddi(0,1,2)
$0(0,0) = (0,0,0) = 5(0,0) = s50(0)
do('\,2,2) = (2,2) = 50(2) = Sod0(1,2)
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sSet$": Intuition

Case sSetf”. Inductively: at each dimension, is the new structure added?

Q0)= OO

oM =CO QD

OO0 90
e8l®
OB O
DL

OO
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sSet$": Intuition

Case sSetf”. Inductively: at each dimension, is the new structure added?

Q(O): C) @ jwoo j‘WO]
SRV
o) =CO ©

wow,0
jwo

wows1

fatss

'/I ./I
. \. \.
<
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Case sSetf”. Inductively: at each dimension, is the new structure added?

0 g

J

L
Q(O): C) @ jWoo jWO1
Q) =CO

—

Theorem

Topologies on sSetf”: exactly the unique extensions of some j*.

Discrete topology: w = 0...0. Trivial topology: w=1...1.
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sSetS": adding degeneracies

Fact (easy proof requires folklore knowledge about a left Kan extension)

Q3"(k) = Q¥"(k)

Example:
2 (=S O-@2O

= @& =0%()
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sSetS": adding degeneracies

Fact (easy proof requires folklore knowledge about a left Kan extension)

Q3"(k) = Q¥"(k)

Example:
2 () =O- SO @O ED=a%0)
In sSet$' = Graph: 4 topologies j%°, j1, j° ",

00 ;01

In sSetS! = ReflGraph: 3 topologies j°, ",
Indeed, j° does not commute with the degeneracy map Q<'(refl):

11

j‘IO
Q1) I a'(1) Al R
Q< (re) Ta<(ren) I # T

Q<(0)  25'(0) Gr——— -
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sSetS": adding degeneracies

Fact (easy proof requires folklore knowledge about a left Kan extension)

Q3"(k) = Q¥"(k)

Example:

-
2 () =O- SO @O &=
In sSety' = Graph: 4 topologies j°, j", j"°, j".

In sSetS! = ReflGraph: 3 topologies j°, /%", "
Indeed, j° does not commute with the degeneracy map Q<'(refl):

10
Q<) &5 a9() G gk
o< (ref) T TS (refl) I 4 T
Q@(O) o Q@(O) > s o &
Jo
Theorem

Topologies on sSetS" are of the form j* for w = 0™1"1=™.
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sSet, and sSet

General case = extend the n-dimensional case

Theorem
For D € {sSety,sSet} and w € {0,1}* (sSet: only 0“ or 0™1* allowed):

3 = (n® " Ynen : Q = Q is a topology on D.

Moreover, every topology on D arises this way.
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Separated elements in sSet

Notation
For all simplicial sets B, and X = (X, ..., Xo) € B(k — 1),

d~'(X) = all k-simplices with incidence tuple X.

Thus, parallel simplices = distinct elements of d~'(X).
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Separated elements in sSet

Notation
For all simplicial sets B, and X = (X, ..., Xo) € B(k — 1),

d~'(X) = all k-simplices with incidence tuple X.

Thus, parallel simplices = distinct elements of d~'(X).

Definition

We say that B € {sSetf”, sSetS", sSet,, sSet} is

W O-simple  if |B(0)| <1, W k-simple  ifvX |d7'(X)| <1,
W O-complete if |B(0)| > 1, B k-complete ifVX |d~'(X)] >1,
W O-exact if B(0) = {-}, B k-exact if VX |d~'(X)| = 1.
Example

0-complete <= nonempty graph

1-simple <= no parallel edges (simple graph)

2-simple <= no parallel triangles
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Separated elements in sSet (continued)

Theorem

Topology j" on D € {sSetf”,sSetg”,sSeu,sSet} and object B € D.

1. Bis j"-separated <= B s k-simple for all k with w;, = 1.
2. Bis j"-complete <= B s k-complete for all k with w, = 1.
3. Bis aj”-sheaf <= B s k-exact for all k with wj, = 1.
If D € {sSety,sSet}, k ranges over N. Otherwise, k ranges over {0, ...,n}.

— New quasitoposes identified.



Conclusion




Conclusion
@00

Conclusion

Definition

Sets
Graphs pPresheaves



Conclusion
@00

Conclusion

Definition

Sets Fuzzy sets

Graphs p Presheaves = Fuzzy graphs



Conclusion
@00

Conclusion

Definition
Sets Fuzzy sets
Graphs p Presheaves = Fuzzy graphs
Theorem

B Fuzzy presheaves form (rm-adhesive) quasitoposes.

B Partially simple graphs form a quasitopos.

W For each bit string w, the following two categories are quasitoposes
» the category of simplicial sets k-simple whenever wy, = 1,

» the category of simplicial sets k-exact whenever wy, =1,



Future work

Future work:
W Define “fuzzy categories”? Are they quasitoposes?
B Obtain more quasitoposes via LT-topologies.

B Look at symmetric simplicial sets



Conclusion
ooce

Open question: Conegation

Negation —a is largest element witha A —a = L.



Conclusion
ooce

Open question: Conegation

Negation —a is largest element witha A —a = L.

Dually, conegation ~a is smallest element withav ~a =T.



Conclusion
ooce

Open question: Conegation

Negation —a is largest element witha A —a = L.

Dually, conegation ~a is smallest element withav ~a =T.
A



Open question: Conegation

Negation —a is largest element witha A —a = L.

Dually, conegation ~a is smallest element withav ~a =T.

A
" Graph: for
Ao NAO NNAO
) (o) ()
Aq ~A =A .

D) (=) O

Conclusion
ooce



Open question: Conegation

Negation —a is largest element witha A —a = L.

Dually, conegation ~a is smallest element withav ~a =T.

A
" Graph: for
Ao NAO NNAO
) (o) ()
Aq ~A =A .

D) (=) O

Conegation seem to be more of an interior operation.

Conclusion
ooce



Open question: Conegation

Negation —a is largest element witha A —a = L.

Dually, conegation ~a is smallest element withav ~a =T.

A
" Graph: for
Ao NAO NNAO
) (o) ()
Aq ~A =A .

D) (=) O

Conegation seem to be more of an interior operation.

B Co-topology?
B Capture local falsehood (dual axioms)?

B Can we obtain other new quasitoposes?

Conclusion
ooce
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