Quasitoposes in graph rewriting

Fuzzy presheaves and LT-topologies

Aloïs Rosset 02 Oct 2025, **EPFL Topology Seminar**

	String rewriting
Rewrite rule(s)	ab o ba

	String rewriting
Rewrite rule(s)	ab o ba

Example (Rewrite steps)

 $abbb \rightarrow babb \rightarrow bbab \rightarrow bbba$

Rewriting •0000

	String rewriting
Rewrite rule(s)	ab o ba

Example (Rewrite steps)

$$abbb \rightarrow babb \rightarrow bbab \rightarrow bbba$$

Definition (Two rewriting properties)

Termination

$$\cdot \to \cdot \to \ldots \to \cdot \not \to$$

Rewriting •0000

	String rewriting
Rewrite rule(s)	$ab \to ba$ $a \to c$

Example (Rewrite steps)

Definition (Two rewriting properties)

Termination

$$\cdot \to \cdot \to \ldots \to \cdot \not \to$$

	String rewriting
Rewrite rule(s)	$ab \to ba$ $a \to c$

Example (Rewrite steps)

Definition (Two rewriting properties)

Termination

	String rewriting
Rewrite rule(s)	$ab \rightarrow ba$
	$a \rightarrow c$
Tute(S)	$cb \rightarrow bc$

Example (Rewrite steps)

Definition (Two rewriting properties)

Termination

Confluence

	String rewriting	Term rewriting	
Rewrite	ab o ba		
rule(s)	$a \rightarrow c$	$f(x, g(y)) \to f(x, x)$	
Tute(5)	cb o bc		

Example (Rewrite steps)

Definition (Two rewriting properties)

Termination

Confluence

	String rewriting	Term rewriting	Graph rewriting
Rewrite rule(s)	$ab \rightarrow ba$ $a \rightarrow c$ $cb \rightarrow bc$	$f(x,g(y)) \to f(x,x)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

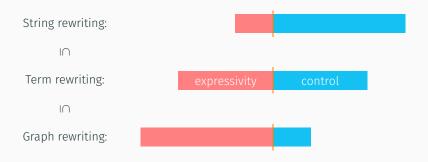
Example (Rewrite steps)

Definition (Two rewriting properties)

Termination

Confluence

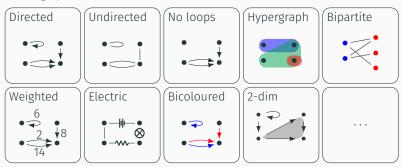
Comparison



Challenge: lift algorithms and results: string → terms → graphs.

Graph rewriting

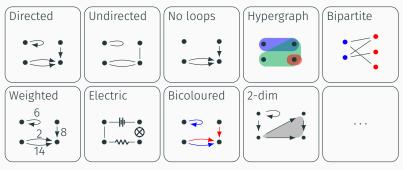
Which graphs?



⇒ Categorical framework

Graph rewriting

Which graphs?



⇒ Categorical framework

Categorical formalisms/algorithms use pushouts and pullbacks.

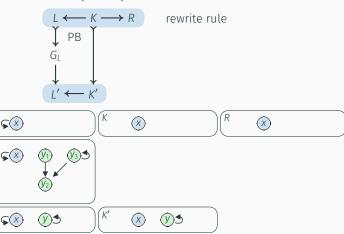
Recent work: Overbeek, Endrullis, Rosset (ICGT 21, JLAMP'23)

Pullback-Pushout Plus (PBPO⁺)

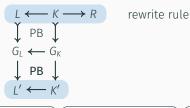
 G_L

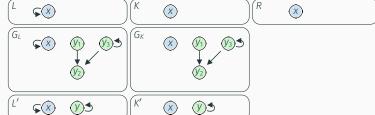
00000

Recent work: Overbeek, Endrullis, Rosset (ICGT 21, JLAMP'23)

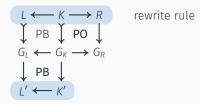


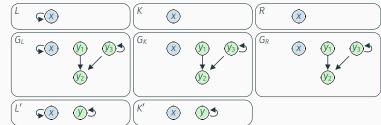
Recent work: Overbeek, Endrullis, Rosset (ICGT 21, JLAMP'23)



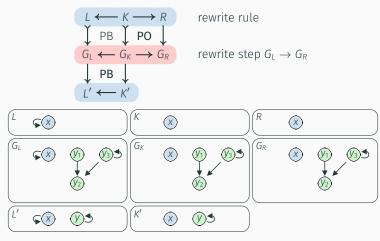


Recent work: Overbeek, Endrullis, Rosset (ICGT 21, JLAMP'23)





Recent work: Overbeek, Endrullis, Rosset (ICGT 21, JLAMP'23)



Label vertices and edges, e.g., with $\mathcal{L} = \{a, b, c\}$.

Suppose complete lattice structure
$$(\mathcal{L}, \vee, \wedge, \top, \bot)$$
, e.g., $\bot \in \stackrel{a}{b} \supset \top$

Label vertices and edges, e.g., with $\mathcal{L} = \{a, b, c\}$.

Suppose complete lattice structure $(\mathcal{L}, \vee, \wedge, \top, \bot)$, e.g., $\bot = b \\ - \Box$

Definition

Fuzzy set (A, α) is a set A with a membership function $\alpha : A \to \mathcal{L}$.

Fuzzy graph (A, α) is a graph A with $\begin{cases} \alpha_E : A(E) \to \mathcal{L} \\ \alpha_V : A(V) \to \mathcal{L} \end{cases}$

Morphisms $f: (A, \alpha) \to (B, \beta)$ must not decrease membership: $\alpha \leq \beta \circ f$.

Label vertices and edges, e.g., with $\mathcal{L} = \{a, b, c\}$.

Suppose complete lattice structure $(\mathcal{L}, \vee, \wedge, \top, \bot)$, e.g., $\bot = \begin{matrix} u \\ b \end{matrix} = \top$

Definition

Fuzzy set (A, α) is a set A with a membership function $\alpha : A \to \mathcal{L}$.

Fuzzy graph (A, α) is a graph A with $\begin{cases} \alpha_E : A(E) \to \mathcal{L} \\ \alpha_V : A(V) \to \mathcal{L} \end{cases}$

Morphisms $f: (A, \alpha) \to (B, \beta)$ must not decrease membership: $\alpha \leqslant \beta \circ f$.

Relabelling = changing labels in rewrite step $G_L \to G_R$. (X in other formalisms)

Label vertices and edges, e.g., with $\mathcal{L} = \{a, b, c\}$.

Suppose complete lattice structure $(\mathcal{L}, \vee, \wedge, \top, \bot)$, e.g., $\bot = b \\ \vdash \top$

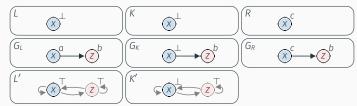
Definition

Fuzzy set (A, α) is a set A with a membership function $\alpha : A \to \mathcal{L}$.

Fuzzy graph (A, α) is a graph A with $\begin{cases} \alpha_E : A(E) \to \mathcal{L} \\ \alpha_V : A(V) \to \mathcal{L} \end{cases}$

Morphisms $f: (A, \alpha) \to (B, \beta)$ must not decrease membership: $\alpha \leqslant \beta \circ f$.

Relabelling = changing labels in rewrite step $G_L \to G_R$. (X in other formalisms)



Motivations for toposes

Theorem (Overbeek, Endrullis, Rosset (ICGT'21, JLAMP'23))

■ In quasitoposes: PBPO⁺ subsumes DPO, SqPO, AGREE, PBPO. (i.e., every DPO/SqPO/...rule has a corresponding PBPO⁺ rule that give the same rewrite steps)

Motivations for toposes

Theorem (Overbeek, Endrullis, Rosset (ICGT'21, JLAMP'23))

- In quasitoposes: PBPO⁺ subsumes DPO, SqPO, AGREE, PBPO. (i.e., every DPO/SqPO/...rule has a corresponding PBPO⁺ rule that give the same rewrite steps)
- In rm-adhesive quasitoposes: 1st categorical termination technique

Motivations for toposes

Theorem (Overbeek, Endrullis, Rosset (ICGT'21, JLAMP'23))

- In quasitoposes: PBPO⁺ subsumes DPO, SqPO, AGREE, PBPO. (i.e., every DPO/SqPO/...rule has a corresponding PBPO⁺ rule that give the same rewrite steps)
- In rm-adhesive quasitoposes: 1st categorical termination technique

Theorem (Behr, Harmer, Krivine (ICGT'21))

- In quasitoposes: concurrency property in non-linear SqPO.
- In rm-adhesive categories: concurrency property in non-linear DPO.

"Toposes are the categorical framework for studying structures which behave like sets" (Borceux'95).

"Toposes are the categorical framework for studying structures which behave like sets" (Borceux'95).

Definition(Elementary) Toposes need

"Toposes are the categorical framework for studying structures which behave like sets" (Borceux'95).

Definition

(Elementary) Toposes need

- finite limits (and colimits)
- (locally) cartesian closed
- subobject classifier.

"Toposes are the categorical framework for studying structures which behave like sets" (Borceux'95).

Definition

(Elementary) Toposes need

- finite limits (and colimits)
- (locally) cartesian closed
- subobject classifier.

Definition

(Elementary) Quasitoposes need

- finite limits and colimits
- locally cartesian closed
- regular-subobject classifier.

"Toposes are the categorical framework for studying structures which behave like sets" (Borceux'95).

Definition Definition (Elementary) Toposes need (Elementary) Quasitoposes need ■ finite limits (and colimits) Inite limits and colimits ■ (locally) cartesian closed locally cartesian closed ■ subobject classifier. regular-subobject classifier.

Example of toposes: presheaf categories.

Definition

Presheaf on category *I* is a functor $A: I^{\text{op}} \to \text{Set}$.

Presheaf morphism $f: A \Rightarrow B$ is a natural transformation.

Definition

Presheaf on category *I* is a functor $A: I^{op} \to Set$. **Presheaf morphism** $f: A \Rightarrow B$ is a natural transformation.

	Set ^{/op}	lob	Set ^{/°P}
i	Set		

Definition Presheaf on category I is a functor $A: I^{\mathrm{op}} \to \mathrm{Set}$. **Presheaf morphism** $f: A \Rightarrow B$ is a natural transformation.

lob	Set ^{l°P}	lob	Set ^{/op}
i	Set		
$E \underset{t}{\overset{s}{\Longrightarrow}} V$	Graph (directed multi-)		

DefinitionPresheaf on category I is a functor $A: I^{\mathrm{op}} \to \mathrm{Set}$. Presheaf morphism $f: A \Rightarrow B$ is a natural transformation.

lob	Set ^{lop}	lob	Set ^{l°P}
i	Set		
$E \stackrel{s}{\Longrightarrow} V$	Graph		
t	(directed multi-)		
$_{F}$ $-s_{1}$ \rightarrow $_{V}$	directed		
$E \xrightarrow{-s_1 \to V} V$	k-uniform		
	hypergraphs		

Definition

Presheaf on category *I* is a functor $A: I^{\mathrm{op}} \to \mathsf{Set}$.

Presheaf morphism $f: A \Rightarrow B$ is a natural transformation.

lob	Set ^{lop}	lob	Set ^{lop}
i	Set	E_2 E_3 V	directed hypergraphs (sizes preserved)
$E \stackrel{s}{\underset{t}{\Longrightarrow}} V$	Graph (directed multi-)		
$E \xrightarrow{-s_1 \to V} V$	directed <i>k</i> -uniform hypergraphs		

Presheaves

Definition

Presheaf on category *I* is a functor $A:I^{\mathrm{op}}\to\mathsf{Set}.$

Presheaf morphism $f: A \Rightarrow B$ is a natural transformation.

lob	Set ^{lop}		Set ^{l°P}
i	Set	E_2 E_3 V	directed hypergraphs (sizes preserved)
$E \stackrel{s}{\underset{t}{\Longrightarrow}} V$	Graph (directed multi-)	$sym \subseteq E \xrightarrow{s} V$ $sym \cdot sym = id_{E},$ $s \cdot sym = t,$ $t \cdot sym = s.$	Undirected graphs
$E \xrightarrow{-S_1 \to V} V$	directed <i>k</i> -uniform hypergraphs		

Presheaves

Definition

Presheaf on category *I* is a functor $A: I^{op} \to Set$.

Presheaf morphism $f: A \Rightarrow B$ is a natural transformation.

lob	Set ^{lop}		Set ^{lop}
i	Set	E_2 $E_3 \longrightarrow V$	directed hypergraphs (sizes preserved)
$E \stackrel{s}{\underset{t}{\Longrightarrow}} V$	Graph (directed multi-)	$sym \subseteq E \xrightarrow{s} V$ $sym \cdot sym = id_{E},$ $s \cdot sym = t,$ $t \cdot sym = s.$	<mark>Undirected</mark> graphs
$E \xrightarrow{-s_1 \to \atop -s_k \to} V$	directed <i>k</i> -uniform hypergraphs	$E \xrightarrow{\text{F efl}} V$ $\xrightarrow{\text{F efl}} V$ $s \cdot \text{refl} = t \cdot \text{refl} = id_V$	Reflexive graphs (or degenerate graphs)

Definition

The Yoneda embedding $y: I \to \operatorname{Set}^{I^{\operatorname{op}}}$ is given by y(i) = I(-, i).

Toposes

Definition

The Yoneda embedding $y: I \to Set^{l^{op}}$ is given by y(i) = I(-, i).

Definition

The **Yoneda embedding** $y: I \to \mathsf{Set}^{J^{\mathsf{op}}}$ is given by y(i) = I(-, i).

y(E)
$\bullet \rightarrow \bullet$

•

Definition

The **Yoneda embedding** $y: I \to \mathsf{Set}^{I^{\mathsf{op}}}$ is given by y(i) = I(-, i).

lob	Set ^{rop}	<i>y</i> (<i>V</i>)	y(E)
$E \stackrel{s}{\underset{t}{\Longrightarrow}} V$	Graph	·	$\boxed{\bullet\!\!\rightarrow\!\!\bullet}$
$E \xrightarrow{-s_1 \to V} V$	<i>k</i> -uniform hypergraphs		1 k
$sym \subseteq E \xrightarrow{s} V$	Undirected graphs	•	•-•
	I		

Definition

The Yoneda embedding $y: I \to \operatorname{Set}^{I^{\operatorname{op}}}$ is given by y(i) = I(-, i).

lob	Set ^{rop}	<i>y</i> (<i>V</i>)	y(E)
$E \stackrel{s}{\underset{t}{\Longrightarrow}} V$	Graph	•	$\overbrace{\bullet\!\to\!\bullet}$
$E \xrightarrow{-s_1 \to V} V$	<i>k</i> -uniform hypergraphs	•	1 n k
$\operatorname{sym} \subsetneq E \stackrel{\operatorname{s}}{\underset{t}{\longrightarrow}} V$	Undirected graphs	•	•-•
$E \xrightarrow[-\tau]{-s} V$	Reflexive graphs	(•	$(\stackrel{\bullet}{ } \stackrel{\bullet}{ } \stackrel{b}{ })$

Definition

The **Yoneda embedding** $y: I \to Set^{l^{op}}$ is given by y(i) = I(-, i).

lob	Set ^{rop}	<i>y</i> (<i>V</i>)	y(E)
$E \stackrel{s}{\underset{t}{\Longrightarrow}} V$	Graph	lacksquare	$\overbrace{\bullet\!\to\!\bullet}$
$E \xrightarrow{-s_1 \to V} V$	<i>k</i> -uniform hypergraphs	•	1 k
$\operatorname{sym} \subsetneq E \stackrel{\operatorname{s}}{\underset{t}{\longrightarrow}} V$	Undirected graphs	•	•-•
$E \begin{array}{c} -s \rightarrow \\ \leftarrow \text{refl} - V \\ -\tau \rightarrow \end{array}$	Reflexive graphs	Ģ•	(

Given category I and functor $\mathcal{L}: I^{\mathrm{op}} \to \mathsf{Poset}$:

Definition (Poset version)

 $\mathcal{L}\text{-}\mathit{fuzzy}\ \mathit{presheaf}\ (\mathsf{A},\alpha)$ consist of

Given category I and functor $\mathcal{L}:I^{\mathrm{op}}\to\mathsf{Poset}$:

Definition (Poset version)

 \mathcal{L} -fuzzy presheaf (A, α) consist of

■ presheaf $A: I^{op} \to Set$,

Given category I and functor $\mathcal{L}: I^{\mathrm{op}} \to \mathsf{Poset}$:

Definition (Poset version)

 \mathcal{L} -fuzzy presheaf (A, α) consist of

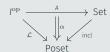
- presheaf $A: I^{op} \to Set$,
- lax natural transformation α : incl·A \Rightarrow \mathcal{L} .

Given category I and functor $\mathcal{L}: I^{\mathrm{op}} \to \mathsf{Poset}$:

Definition (Poset version)

 \mathcal{L} -fuzzy presheaf (A, α) consist of

- presheaf $A: I^{op} \to Set$,
- lax natural transformation α : incl·A \Rightarrow \mathcal{L} .

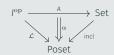


Given category I and functor $\mathcal{L}:I^{\mathrm{op}}\to\mathsf{Poset}$:

Definition (Poset version)

 \mathcal{L} -fuzzy presheaf (A, α) consist of

- presheaf $A: I^{op} \to Set$,
- lax natural transformation α : incl·A \Rightarrow \mathcal{L} .



Morphism $f: (A, \alpha) \to (B, \beta)$ natural transformation with

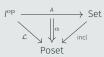
$$\alpha_i \leqslant \beta_i f_i, \quad \forall i \in I^{\mathrm{op}}$$

Given category I and functor $\mathcal{L}: I^{\mathrm{op}} \to \mathsf{Poset}$:

Definition (Poset version)

 \mathcal{L} -fuzzy presheaf (A, α) consist of

- presheaf $A: I^{op} \to Set$,
- lax natural transformation α : incl·A \Rightarrow \mathcal{L} .



Morphism $f:(A,\alpha)\to(B,\beta)$ natural transformation with

$$\alpha_i \leqslant \beta_i f_i, \quad \forall i \in I^{\mathrm{op}}$$

lob	i	$E \stackrel{s}{\underset{t}{\Longrightarrow}} V$	$ \begin{array}{c} -s_1 \rightarrow \\ E - s_2 \rightarrow V \\ -s_3 \rightarrow \end{array} $	
Fuzzy presheaf	Fuzzy sets	Fuzzy granhe	Fuzzy 3-uniform	
category	ruzzy sets	Fuzzy graphs	hypergraphs	

Let I be a small category.

(*) if $(\mathcal{L}, \wedge, \vee, \perp, \top, \Rightarrow)$ complete Heyting algebra.

Let I be a small category. Contribution

(*) if (\$\mathcal{L}, \wedge, \vee, \perp, \perp, \perp)\$ complete Heyting algebra.

Let I be a small category. Contribution

- (*) if $(\mathcal{L}, \wedge, \vee, \perp, \top, \Rightarrow)$ complete Heyting algebra.
- $(\star\star)$ if $\mathcal{L}:I^{\mathrm{op}}\to\mathsf{CompHeytAlg}.$

Let I be a small category. Contribution

- (*) if $(\mathcal{L}, \wedge, \vee, \perp, \top, \Rightarrow)$ complete Heyting algebra.
- $(\star\star)$ if $\mathcal{L}:\mathit{I}^{\mathrm{op}}\to\mathsf{CompHeytAlg}.$

Bonus: FuzzyPresheaf(I, \mathcal{L}) is rm-adhesive.

Proof

Terminal object + Pullbacks $\overset{\text{e.g., Borceux Vol1}}{\Longrightarrow}$ all finite limits

Definition

An object 1 is **terminal** if \forall object A, \exists ! arrow $A \rightarrow 1$.

Definition (Product of objects A, B)

Definition An object 1 is **terminal** if \forall object A, \exists ! arrow $A \rightarrow 1$.

Definition (Product of objects A, B) **Product** is object $A \times B$ with $\pi_1 : A \times B \to A$, and $\pi_2 : A \times B \to B$, + a universal property.

	Terminal 1	$A \times B$
Set	{·}	$\{(a,b)\mid a\in A,b\in B\}$

Definition

An object 1 is **terminal** if \forall object A, \exists ! arrow $A \rightarrow 1$.

Definition (Product of objects A, B)

	Terminal 1	$A \times B$
Set	$\{\cdot\}$	$\{(a,b)\mid a\in A,b\in B\}$
Graphs	{ · 5}	\times \longrightarrow $=$

Definition

An object 1 is **terminal** if \forall object A, \exists ! arrow $A \rightarrow 1$.

Definition (Product of objects A, B)

	Terminal 1	$A \times B$
Set	{⋅}	$\{(a,b)\mid a\in A,b\in B\}$
Graphs	{ · 5}	$\begin{array}{c} \uparrow \\ \uparrow \\ \end{array} \times \begin{array}{c} \bullet \\ \bullet \\ \end{array} = \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array}$
Presheaf	$1(i) := \{\cdot\}, \forall i \in I$	$(A \times B)(i) = A(i) \times B(i), \forall i \in I$

Terminal object + Pullbacks $\stackrel{\text{e.g., Borceux Vol1}}{\Longrightarrow}$ all finite limits

Definition

An object 1 is **terminal** if \forall object A, \exists ! arrow $A \rightarrow 1$.

Definition (Product of objects A, B)

	Terminal 1	$A \times B$
Set	{·}	$\{(a,b)\mid a\in A,b\in B\}$
Graphs	{ · 5}	$\begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \end{array} \times \bullet \longrightarrow \bullet = \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$
Presheaf	$1(i) := \{\cdot\}, \forall i \in I$	$(A \times B)(i) = A(i) \times B(i), \forall i \in I$
Fuzzy set	$\{\cdot^{ op}\}$	$(A \times B, (a, b) \mapsto \alpha(a) \wedge \beta(b))$

Terminal object + Pullbacks ^{e.g., Borceux Vol1} all finite limits

Definition

An object 1 is **terminal** if \forall object A, \exists ! arrow $A \rightarrow 1$.

Definition (Product of objects A, B)

	Terminal 1	$A \times B$
Set	{·}	$\{(a,b)\mid a\in A,b\in B\}$
Graphs	{ · 5}	$\begin{array}{c} \uparrow \\ \downarrow \\ \uparrow \\ \end{array} \times \begin{array}{c} \bullet \\ \bullet \\ \end{array} \longrightarrow \begin{array}{c} \bullet \\ \bullet \\ \end{array}$
Presheaf	$1(i) := \{\cdot\}, \forall i \in I$	$(A \times B)(i) = A(i) \times B(i), \forall i \in I$
Fuzzy set	$\{\cdot^{ op}\}$	$(A \times B, (a, b) \mapsto \alpha(a) \wedge \beta(b))$
Fuzzy presheaves	$1(i) := \{ \cdot^{\top} \}, \forall i \in I$	$((A(i) \times B(i))_{i \in I}, (a, b) \mapsto \alpha_i(a) \wedge \beta_i(b))$

Definition

Subobject classifier is True : 1 $\rightarrow \Omega$ with

$$A \subseteq B$$
 subobjects

$$\iff$$

 $\chi_{A}:B o\Omega$ characteristic function

Definition

Subobject classifier is True : 1 $\rightarrow \Omega$ with

$$A \subseteq B$$
 subobjects

$$\iff$$

$$\chi_A:B o\Omega$$
 characteristic function

$$\begin{array}{ccc}
A & \xrightarrow{!} & 1 \\
m \downarrow & & \downarrow \\
B & \xrightarrow{\chi_A} & \Omega
\end{array}$$

■ Set :
$$\Omega := \{0,1\}$$
 $A \subseteq B \iff \chi_A : b \mapsto \begin{cases} 1, \text{ if } b \in A \\ 0, \text{ otherwise} \end{cases}$

Definition

Subobject classifier is True : $1 \rightarrow \Omega$ with

$$A \subseteq B$$
 subobiects

$$\iff$$

 $\chi_A:B\to\Omega$ characteristic function

$$\begin{array}{ccc}
A & \xrightarrow{!} & 1 \\
\downarrow & & \downarrow \\
B & \xrightarrow{\chi_A} & \Omega
\end{array}$$

$$\blacksquare \ \mathsf{Graph} : \Omega := \left[\begin{smallmatrix} 0 & \zeta & 0 & \overset{\varsigma}{\longleftrightarrow} & \overset{1}{\longleftrightarrow} \\ \begin{smallmatrix} 0 & \zeta & 0 & \overset{\varsigma}{\longleftrightarrow} & \overset{1}{\longleftrightarrow} \\ \begin{smallmatrix} (\varsigma,t) \end{matrix} \right]$$

Definition

Subobject classifier is True : $1 \rightarrow \Omega$ with

$$A \subseteq B$$
 subobiects

$$\iff$$

$$\chi_A:B o\Omega$$
 characteristic function

$$\begin{array}{ccc}
A & \xrightarrow{!} & 1 \\
m & & \downarrow & \uparrow \\
B & \xrightarrow{\gamma_A} & \Omega
\end{array}$$

■ Set :
$$\Omega := \{0,1\}$$
 $A \subseteq B \iff \chi_A : b \mapsto \begin{cases} 1, \text{ if } b \in A \\ 0, \text{ otherwise} \end{cases}$
■ Graph : $\Omega := \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{cases}$

$$\blacksquare \ \, \mathsf{Graph} : \Omega := \left[\begin{smallmatrix} 0 & \nwarrow & 0 \\ & \ddots & \ddots \\ & & \ddots & \ddots \\ & & & (s,t) \end{smallmatrix} \right]$$

$$\begin{array}{c}
A \\
\hline
 a \rightarrow b
\end{array} \subseteq
\begin{array}{c}
B \\
\hline
 a \Rightarrow b \leftarrow c \\
\end{array}$$

$$\iff \chi_{A} :
\begin{cases}
a, b \mapsto 1 \\
c \mapsto 0 \\
\Rightarrow \mapsto \frac{1}{2} \\
\Rightarrow \mapsto \frac{(s,t)}{2} \\
\leftarrow \mapsto \frac{t}{2} \\
\circlearrowleft \mapsto \frac{0}{2}
\end{cases}$$

Definition

Subobject classifier is True : $1 \rightarrow \Omega$ with

$$A \subseteq B$$
 subobiects

$$\iff$$

 $\chi_A:B\to\Omega$ characteristic function

$$\begin{array}{ccc}
A & \xrightarrow{!} & 1 \\
\downarrow & & \downarrow \\
B & \xrightarrow{\chi_A} & \Omega
\end{array}$$

$$\blacksquare \ \mathsf{Graph} : \Omega \coloneqq \left[\begin{smallmatrix} 0 & \varsigma & 0 \\ \vdots & \ddots & \vdots \\ 0 & \varsigma & 0 \end{smallmatrix} \right]$$

$$\begin{array}{c}
A & B \\
\hline
 a \to b
\end{array} \subseteq
\begin{array}{c}
B \\
 a \rightrightarrows b \leftarrow c \circlearrowleft
\end{array}
\iff \chi_A :$$

$$\begin{array}{c}
a, b \mapsto 1 \\
c \mapsto 0 \\
 \to \mapsto \frac{1}{\rightarrow} \\
 \leftarrow \mapsto \frac{t}{\rightarrow} \\
 \circlearrowleft \mapsto \stackrel{(s,t)}{\rightarrow}
\end{cases}$$

■ Presheaves: $\Omega(i) = \text{Sub}(y(i))$ is the set of all subpresheaves/sieves of y(i). (generalisation of sets and graphs)

Regular-subobject classifier

■ FuzzySet(\mathcal{L}): X However, $\Omega := \{0^{\mathsf{T}}, 1^{\mathsf{T}}\}$ classifies regular fuzzy subsets.

$$\{a^{x}\}\subseteq\{a^{0.4},b^{0.6}\}\$$
 is regular \Longrightarrow $x=0.4$

Regular-subobject classifier

■ FuzzySet(\mathcal{L}): X However, $\Omega := \{0^{\mathsf{T}}, 1^{\mathsf{T}}\}$ classifies regular fuzzy subsets.

$$\{a^{x}\}\subseteq\{a^{0.4},b^{0.6}\}$$
 is regular \Rightarrow $x=0.4$

Lemma

Regular-subobject classifier fuzzy presheaves:

 Ω of presheaves + all elements full membership.

Cartesian closed

Definition

For objects A, B of a category, an **exponential object** is an object B^A s.t.

$$C \times A \to B \quad \stackrel{\text{Currying}}{\underset{(\text{adjunction})}{\Longleftrightarrow}} \quad C \to B^A.$$

Cartesian closed

Definition

For objects A, B of a category, an **exponential object** is an object B^A s.t.

$$C \times A \to B \xrightarrow{\text{Currying} \atop \text{(adjunction)}} C \to B^A.$$

■ Sets: $B^A := \{ \text{functions } A \to B \}.$

Cartesian closed

Definition

For objects A, B of a category, an **exponential object** is an object B^A s.t.

$$C \times A \to B \quad \stackrel{\text{Currying}}{\underset{\text{(adjunction)}}{\Longleftrightarrow}} \quad C \to B^A.$$

- Sets: $B^A := \{\text{functions } A \to B\}.$
- Graphs: $B^A := \begin{cases} B^A(V) := \{ \text{graph hom. } \{ \cdot \} \times A \to B \} \\ B^A(E) := \{ \text{graph hom. } \{ s \to t \} \times A \to B \}. \end{cases}$

Cartesian closed

Definition

For objects A, B of a category, an **exponential object** is an object B^A s.t.

$$C \times A \to B \xrightarrow{\text{Currying}} C \to B^A$$
.

- Sets: $B^A := \{\text{functions } A \to B\}.$
- Graphs: $B^A := \begin{cases} B^A(V) := \{ \text{graph hom. } \{ \cdot \} \times A \to B \} \\ B^A(E) := \{ \text{graph hom. } \{ s \to t \} \times A \to B \}. \end{cases}$
- Presheaves: $B^A(i) := \{\text{morphisms } y(i) \times A \rightarrow B\}.$

Cartesian closed

Definition

For objects A, B of a category, an **exponential object** is an object B^A s.t.

$$C \times A \to B \xrightarrow{\text{Currying}} C \to B^A$$
.

- Sets: $B^A := \{\text{functions } A \to B\}.$
- Graphs: $B^A := \begin{cases} B^A(V) := \{ \text{graph hom. } \{ \cdot \} \times A \to B \} \\ B^A(E) := \{ \text{graph hom. } \{ s \to t \} \times A \to B \}. \end{cases}$
- Presheaves: $B^A(i) := \{\text{morphisms } y(i) \times A \rightarrow B\}.$
- Fuzzy sets: $(B, \beta)^{(A,\alpha)} = (B^A, \theta)$

$$\theta(f:A\to B):=\bigwedge_{\alpha\in\Lambda}(\alpha(\alpha)\Rightarrow\beta f(\alpha)).$$

Cartesian closed

Definition

For objects A, B of a category, an **exponential object** is an object B^A s.t.

$$C \times A \to B \xrightarrow{\text{Currying}} C \to B^A$$
.

- Sets: $B^A := \{\text{functions } A \to B\}.$
- Graphs: $B^A := \begin{cases} B^A(V) := \{ \text{graph hom. } \{ \cdot \} \times A \to B \} \\ B^A(E) := \{ \text{graph hom. } \{ s \to t \} \times A \to B \}. \end{cases}$
- Presheaves: $B^A(i) := \{\text{morphisms } y(i) \times A \rightarrow B\}.$
- Fuzzy sets: $(B, \beta)^{(A,\alpha)} = (B^A, \theta)$

$$\theta(f:A\to B):=\bigwedge_{a\in A}(\alpha(a)\Rightarrow \beta f(a)).$$

Lemma

Fuzzy presheaves have exponential objects.

Locally cartesian closed

Cartesian closedness stable under categorical equivalence. Hence:

Lemma (e.g., Awodey'05)

Presheaf(I) is locally cartesian closed because

 $Presheaf(I)/D \simeq Presheaf(el(D))$

Locally cartesian closed

Cartesian closedness stable under categorical equivalence. Hence:

Lemma (e.g., Awodey'05)

Presheaf(I) is locally cartesian closed because

$$Presheaf(I)/D \simeq Presheaf(el(D))$$

Lemma

FuzzyPresheaf (I, \mathcal{L}) is locally cartesian closed because

$$\mathsf{FuzzyPresheaf}(\mathit{I},\mathcal{L})\big/_{(\mathcal{D},\,\delta)} \ \simeq \ \mathsf{FuzzyPresheaf}(\mathsf{el}(\mathcal{D},\,\delta),\,\tilde{\mathcal{L}})$$

Adhesivity

Definition (Simplified)

Category is

 \blacksquare adhesive: if m mono, bottom PO, back PBs:

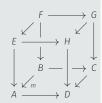
front PBs
$$\iff$$
 top PO

■ rm-adhesive: if m reg. mono, ——:

front PBs
$$\iff$$
 top PO

■ rm-quasiadhesive: if ——::

front PBs \implies top PO



Adhesivity

Definition (Simplified)

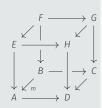
Category is

■ adhesive: if *m* mono, bottom PO, back PBs:

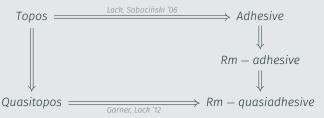
■ rm-adhesive: if m reg. mono, ——:

■ rm-quasiadhesive: if ——::

front PBs ⇒ top PO



Theorem



Adhesivity

Definition (Simplified)

Category is

adhesive: if *m* mono, bottom PO, back PBs:

front PBs \iff top PO

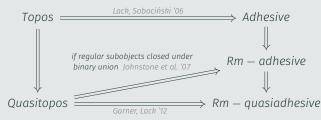
■ rm-adhesive: if m reg. mono, ——:

front PBs \iff top PO

■ rm-quasiadhesive: if ——::

front PBs ⇒ top PO

Theorem



LT-Topologies

Logic with $\boldsymbol{\Omega}$

Toposes have an internal logic (Goldblatt'06, McLarty'92)

Toposes have an internal logic (Goldblatt'06, McLarty'92)

Definition

Truth values are $1 \rightarrow \Omega$ (global elements).

Toposes have an internal logic (Goldblatt'06, McLarty'92)

Definition

Truth values are $1 \rightarrow \Omega$ (global elements).

Set: 0, 1

Graph: $0 \subseteq 0$, $(s,t) \subseteq 1$, $1 \subseteq 1$

Toposes have an internal logic (Goldblatt'06, McLarty'92)

Definition

Truth values are $1 \rightarrow \Omega$ (global elements).

Graph:
$$0 \subseteq 0$$
, $(s,t) \subseteq 1$, $1 \subseteq 1$

Logical connectives:

$$\begin{split} \mathsf{False} &\coloneqq \chi_{0 \overset{!}{\longmapsto} 1} \\ \neg &\coloneqq \chi_{\mathsf{False}} \\ \wedge &\coloneqq \chi_{\langle \mathsf{True}, \mathsf{True} \rangle} \\ &\Rightarrow &\coloneqq \chi_{\mathsf{Eq}(\pi_1, \wedge) \to \Omega \times \Omega} \\ &\vee &\coloneqq \chi_{[\langle \mathsf{True}_{\Omega}, \mathsf{id}\Omega \rangle, \langle \mathsf{id}\Omega, \mathsf{True}_{\Omega} \rangle]} \end{split}$$

Toposes have an internal logic (Goldblatt'06, McLarty'92)

Definition

Truth values are $1 \rightarrow \Omega$ (global elements).

Graph:
$$0 \subseteq 0$$
, $(s,t) \subseteq 1$, $1 \subseteq 1$

Logical connectives:

$$\begin{split} \mathsf{False} &\coloneqq \chi_{0 \overset{!}{\mapsto} 1} \\ \neg &\coloneqq \chi_{\mathsf{False}} \\ \wedge &\coloneqq \chi_{\langle \mathsf{True}, \mathsf{True} \rangle} \\ &\Rightarrow &\coloneqq \chi_{\mathsf{Eq}(\pi_1, \wedge) \to \Omega \times \Omega} \\ \vee &\coloneqq \chi_{[\langle \mathsf{True}_{\Omega}, \mathsf{id}\Omega \rangle, \langle \mathsf{id}\Omega, \mathsf{True}_{\Omega} \rangle]} \end{split}$$

 $\implies \Omega$ is a Heyting algebra.

(for object X, then $\text{True}_X := X \xrightarrow{!} 1 \xrightarrow{\text{True}} \Omega$ means true in context X)

LT-topology / operator / modality talks about "locally truth".

LT-topology / operator / modality talks about "locally truth".

- Generalises "topology on a set" 🗶
- Generalises Grothendieck topology ✓

LT-topology / operator / modality talks about "locally truth".

- Generalises "topology on a set" 🗡
- Generalises Grothendieck topology 🗸

Definition

A *LT-topology* on a topos is a morphism $j:\Omega\to\Omega$ satisfying

LT-topology / operator / modality talks about "locally truth".

- Generalises "topology on a set" 🗡
- Generalises Grothendieck topology 🗸

Definition

A *LT-topology* on a topos is a morphism $j:\Omega \to \Omega$ satisfying

1.
$$j \circ \text{True} = \text{True}$$

$$(P \implies locally P)$$

LT-topology / operator / modality talks about "locally truth".

- Generalises "topology on a set" 🗡
- Generalises Grothendieck topology 🗸

Definition

A *LT-topology* on a topos is a morphism $j:\Omega\to\Omega$ satisfying

1.
$$j \circ \text{True} = \text{True}$$

$$(P \implies locally P)$$

2.
$$j \circ j = j$$

(locally locally P = locally P)

LT-topology / operator / modality talks about "locally truth".

- Generalises "topology on a set" 🗡
- Generalises Grothendieck topology 🗸

Definition

A *LT-topology* on a topos is a morphism $j:\Omega \to \Omega$ satisfying

1.
$$j \circ \text{True} = \text{True}$$

$$(P \implies locally P)$$

2.
$$j \circ j = j$$

(locally locally
$$P = locally P$$
)

3.
$$j \circ \wedge = \wedge \circ (j \times j)$$

(locally
$$P \wedge Q \implies locally P \wedge locally Q$$
)

LT-topology / operator / modality talks about "locally truth".

- Generalises "topology on a set" 🗡
- Generalises Grothendieck topology ✓

Definition

A *LT-topology* on a topos is a morphism $j:\Omega \to \Omega$ satisfying

1.
$$j \circ \text{True} = \text{True}$$

$$(P \implies locally P)$$

2.
$$j \circ j = j$$

(locally locally
$$P = locally P$$
)

3.
$$j \circ \wedge = \wedge \circ (j \times j)$$

(locally
$$P \wedge Q \implies locally P \wedge locally Q$$
)

Induces *closure* operator on subobjects: $\overline{A_0 \rightarrow A}$: $\chi_{\overline{A_0 \rightarrow A}} := j \circ \chi_{A_0 \rightarrow A}$.

Subobject $A_0 \rightarrow A$ is **dense** if $\overline{A_0} = A$.

Examples of topologies

	Topology <i>j</i>	Closure $\overline{A_0 \subseteq A}$	Dense object
Set {	Trivial τrue _Ω	adds everything	all
Jet)	Discrete $\mathrm{id}\Omega$	adds nothing	only A

$$y(V) = \underbrace{\hspace{1cm}}_{\hspace{1cm}} \Omega(V) = \operatorname{Sub}(y(V)) = \underbrace{\hspace{1cm}}_{\hspace{1cm}} \underbrace{\hspace{1cm}}_{\hspace{1cm}} 1$$

Examples of topologies

	Topology <i>j</i>	Closure $\overline{A_0 \subseteq A}$	Dense object
Set {	Trivial τrueΩ	adds everything	all
Graph	Discrete idΩ	adds nothing	only A
	Closed for (s,t) $(-\vee (s,t))$	adds all vertices	$if A_0(E) = A(E)$
	Dbl. negation ¬¬	adds all valid edges	$if A_0(V) = A(V)$

$$y(V) = \bigodot \qquad \Omega(V) = \operatorname{Sub}(y(V)) = \bigodot \qquad \bigodot \qquad \underbrace{\circ}_{S}$$

$$y(E) = \bigodot \qquad \Omega(E) = \operatorname{Sub}(y(E)) = \bigodot \qquad \bigodot \qquad \underbrace{\circ}_{S}$$

Examples of topologies

	Topology <i>j</i>	Closure $\overline{A_0 \subseteq A}$	Dense object
Set {	Trivial τrueΩ	adds everything	all
Graph	Discrete idΩ	adds nothing	only A
	Closed for (s,t) $(-\vee (s,t))$	adds all vertices	$if A_0(E) = A(E)$
	Dbl. negation ¬¬	adds all valid edges	$if A_0(V) = A(V)$

Illustration of $\neg\neg$ -topology on Graph: for $a \rightrightarrows b \leftarrow c \circlearrowleft$

$$\overbrace{a \Longrightarrow b}$$

Separated elements

Hausdorff space B: any A \xrightarrow{f} B determined by values on any dense $A_0 \subseteq A$.

Separated elements

Hausdorff space B: any A \xrightarrow{f} B determined by values on any dense $A_0 \subseteq A$.

Definition

Topology j, object B, arbitrary j-dense $m: A_0 \rightarrow A$ and arbitrary $f: A_0 \rightarrow B$. Count the number of factorisations $g: A \rightarrow B$ of f through m ($\forall A_0, A, f$):

- B is **separated** if $\#g \leq 1$,
- B is **complete** if $\#g \geqslant 1$,
- B is a **sheaf** if #g = 1.

Separated elements

Hausdorff space B: any $A \xrightarrow{f} B$ determined by values on any dense $A_0 \subseteq A$.

Definition

Topology j, object B, arbitrary j-dense $m: A_0 \rightarrow A$ and arbitrary $f: A_0 \rightarrow B$. Count the number of factorisations $g: A \rightarrow B$ of f through m ($\forall A_0, A, f$):

- B is **separated** if $\#g \leq 1$,
- B is **complete** if $\#g \geqslant 1$,
- B is a **sheaf** if #g = 1.

Lemma (Johnstone '79)

For a topology,

- separated elements form a quasitopos.
- sheaves form a quasitopos.

Separated elements and sheaves in Set, Graph, FuzzyGraph(\mathcal{L})

Тор.	Closure $\overline{A_0 \subseteq A}$	Dense object	Sep. elem.	Sheaves
Triv.	(adds everything)	all	subterminal objects	terminal objects
Dis.	(adds nothing)	only A	(all)	all
Closed	(adds all vertices)	$if A_0(E) = A(E)$	Ø, .5	3.3
77	(adds all valid edges)	$ if A_0(V) = A(V)$	simple graphs	complete graphs

Separated elements and sheaves in Set, Graph, FuzzyGraph(\mathcal{L})

	Тор.	Closure $\overline{A_0 \subseteq A}$	Dense object	Sep. elem.	Sheaves
	Triv.	(adds everything)	all	subterminal objects	terminal objects
	Dis.	(adds nothing)	only A	(all)	all
С	losed	(adds all vertices)	$if A_0(E) = A(E)$	Ø, · 5	3.3
	$\neg\neg$	(adds all valid edges)	if $A_0(V) = A(V)$	simple graphs	complete graphs

Corollary (Vigna'97)

Simple graphs form a quasitopos.

Separated elements and sheaves in Set, Graph, FuzzyGraph(\mathcal{L})

Тор.	Closure $\overline{A_0 \subseteq A}$	Dense object	Sep. elem.	Sheaves
Triv.	(adds everything)	all	subterminal objects	terminal objects
Dis.	(adds nothing)	only A	(all)	all
Closed	(adds all vertices)	$if A_0(E) = A(E)$	Ø, .5	3.35
77	(adds all valid edges)	$if A_0(V) = A(V)$	simple graphs	complete graphs

Corollary (Vigna'97)

Simple graphs form a quasitopos.

Lemma

Similarly, those also form quasitoposes:

■ Simple reflexive graphs

■ Simple k-uniform hypergraphs

■ Simple undirected graphs

.

Bicoloured

Bicoloured graphs

lob	Set ^{l'op}
$E \stackrel{\varsigma}{=} \stackrel{\varsigma}{t} \stackrel{ ightarrow}{ ightarrow} V$	Graph
$E \stackrel{s}{\underset{t}{\longrightarrow}} V \stackrel{s'}{\underset{t'}{\longleftarrow}} E'$	Bicoloured graphs $(\rightarrow \text{ and } \rightarrow)$

Bicoloured graphs

	-		_
- 1	C	יו	μ

 $\mathsf{Set}^{\mathsf{I}^{\mathrm{op}}}$

$$E \stackrel{s}{=} \stackrel{t}{\to} V$$

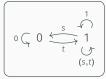
Graph

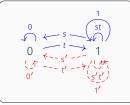
$$E \xrightarrow{s} V \xleftarrow{s'} E'$$

Bicoloured graphs $(\rightarrow \text{ and } \rightarrow)$

Ω_{Graph}

 $\Omega_{\text{BiColGraph}}$





Topologies on BiColGraph

Lemma

4 topologies on Graph \implies 8 topologies on BiColGraph.

Topologies on BiColGraph

Lemma

4 topologies on Graph \implies 8 topologies on BiColGraph.

	j ₁	j ₂	j ₃	j ₄	j 5	j ₆	j ₇	j ₈
on E	disc.		disc.	$\neg \neg$	closed	closed	triv.	triv.
on E'	disc.	disc.		77	closed	triv.	closed	triv.

Topologies on BiColGraph

Lemma

4 topologies on Graph ⇒ 8 topologies on BiColGraph.

	j ₁	j_2	j ₃	j ₄	<i>j</i> 5	j ₆	j ₇	j ₈
on E	disc.	77	disc.	$\neg \neg$	closed	closed	triv.	triv.
on E'	disc.	disc.	77	77	closed	triv.	closed	triv.

$$j_2$$
-separated el. = blue-simple graphs. j_3 -separated el. = red-simple graphs. \Rightarrow Partially simple graphs.

Topologies on BiColGraph

Lemma

4 topologies on Graph \implies 8 topologies on BiColGraph.

	j ₁	j_2	<i>j</i> ₃	j ₄	j 5	j ₆	j ₇	j ₈
on E	disc.	77	disc.	77	closed	closed	triv.	triv.
on E'	disc.	disc.	77	77	closed	triv.	closed	triv.

$$j_2$$
-separated el. = blue-simple graphs. j_3 -separated el. = red-simple graphs. \Rightarrow Partially simple graphs.

Corollary

Partially simple graphs form a quasitopos.

Simplicial sets

Simplicial sets

Simplicial sets = graphs with triangles (2-dim), tetrahedra (3-dim), etc.

Definition

 $sSet = Simplicial sets = Set^{\Delta^{op}}$ with

$$\Delta^{\mathrm{op}} = 0 \quad \frac{\langle a_1^1 - a_2 \rangle}{\langle a_0^1 - a_2 \rangle} = 1 \quad \frac{\langle a_2^2 - a_0^1 \rangle}{\langle a_0^2 - a_1^1 \rangle} = 2 \quad \cdots \quad \cdots \quad \cdots$$

 d_i^n = face maps, s_i^n = degeneracy maps satisfy simplicial identities

 $sSet_{+} = Semi-simplicial sets$: only d_i maps.

 $sSet^{\leq n} = n$ -dimensional simplicial sets: only $0, \ldots, n$.

 $sSet_{\perp}^{\leq n} = n$ -dimensional semi-simplicial sets: both.

Simplicial identities

 Δ is defined with totally ordered sets. Δ^{op} is defined with graphs.

Map d_i omits vertex at position i: $d_1(v_0, v_1) = v_0$.

Map s_i duplicates vertex at position i: $s_1(v_0, v_1) = (v_0, v_1, v_1)$.

Simplicial identities

 Δ is defined with totally ordered sets. Δ^{op} is defined with graphs.

Map d_i omits vertex at position i: $d_1(v_0, v_1) = v_0$.

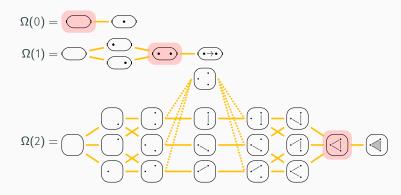
Map s_i duplicates vertex at position i: $s_1(v_0, v_1) = (v_0, v_1, v_1)$.

$$\begin{cases} d_i^{n-1}d_j^n = d_{j-1}^{n-1}d_i^n & \text{if } i < j \\ s_i^{n+1}s_j^n = s_{j+1}^{n+1}s_i^n & \text{if } i \leqslant j \end{cases}$$
Simplicial identities:
$$\begin{cases} d_i^{n+1}s_j^n = \begin{cases} s_{j-1}^{n-1}d_i^n & \text{if } i < j \\ \text{id}_n & \text{if } i = j \text{ or } i = j+1 \\ s_j^{n-1}d_{i-1}^n & \text{if } i > j+1 \end{cases}$$

$$(0,1) \qquad (1,2) \qquad (1,2) \qquad (1,2)$$

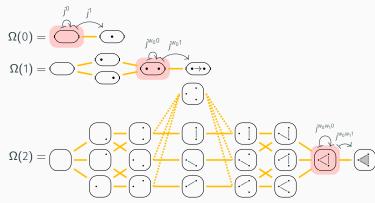
sSet^{≤n}: Intuition

Case $\mathrm{sSet}_+^{\leqslant n}$. Inductively: at each dimension, is the new structure added?



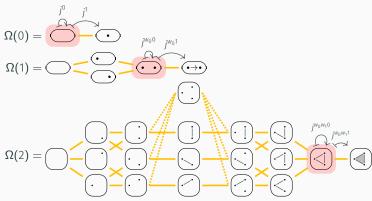
$sSet_{+}^{\leq n}$: Intuition

Case $\mathrm{sSet}_+^{\leqslant n}$. Inductively: at each dimension, is the new structure added?



sSet^{≤n}: Intuition

Case $\mathrm{sSet}_+^{\leqslant n}$. Inductively: at each dimension, is the new structure added?



Theorem

Topologies on $sSet_+^{\leqslant n}$: exactly the unique extensions of some j^w .

Discrete topology: w = 0...0. Trivial topology: w = 1...1.

sSet^{≤n}: adding degeneracies

Fact (easy proof requires folklore knowledge about a left Kan extension)

$$\Omega_+^{\leqslant n}(k) \cong \Omega^{\leqslant n}(k)$$

Example:

$$\Omega_+^{\leqslant 1}(1) = \bigcap_{i=1}^{n} \bigcap$$

sSet^{≤n}: adding degeneracies

Fact (easy proof requires folklore knowledge about a left Kan extension)

$$\Omega_+^{\leqslant n}(k) \cong \Omega^{\leqslant n}(k)$$

Example:

In $\mathsf{SSet}^{\leqslant 1}_+ = \mathsf{Graph}$: 4 topologies j^{00} , j^{01} , j^{10} , j^{11} . In $\mathsf{SSet}^{\leqslant 1} = \mathsf{ReflGraph}$: 3 topologies j^{00} , j^{01} , j^{11}

Indeed, j^{10} does not commute with the degeneracy map $\Omega^{\leqslant 1}$ (refl):

sSet^{≤n}: **adding degeneracies**

Fact (easy proof requires folklore knowledge about a left Kan extension)

$$\Omega_+^{\leqslant n}(k) \cong \Omega^{\leqslant n}(k)$$

Example:

In $SSet_{+}^{\leq 1} = Graph$: 4 topologies j^{00} , j^{01} , j^{10} , j^{11} .

In sSet^{≤ 1} = ReflGraph: 3 topologies j^{00} , j^{01} , j^{11}

Indeed, j^{10} does not commute with the degeneracy map $\Omega^{\leq 1}$ (refl):

Theorem

Topologies on sSet $^{\leq n}$ are of the form i^w for $w = 0^m 1^{n+1-m}$.

$\mathsf{sSet}_+ \ \textbf{and} \ \mathsf{sSet}$

General case = extend the *n*-dimensional case

Theorem

For $D \in \{sSet_+, sSet\}$ and $w \in \{0,1\}^{\omega}$ (sSet: only 0^{ω} or $0^m 1^{\omega}$ allowed):

$$j^w = (j_n^{w_0 \dots w_n})_{n \in \mathbb{N}} : \Omega \to \Omega$$
 is a topology on D.

Moreover, every topology on D arises this way.

Separated elements in sSet

Notation

For all simplicial sets
$$B$$
, and $\vec{x} = (x_k, \dots, x_0) \in B(k-1)^{k+1}$, $d^{-1}(\vec{x}) := \text{all } k\text{-simplices with incidence tuple } \vec{x}$.

Thus, parallel simplices = distinct elements of $d^{-1}(\vec{x})$.

Separated elements in sSet

Notation

For all simplicial sets B, and $\vec{x} = (x_k, \dots, x_0) \in B(k-1)^{k+1}$,

 $d^{-1}(\vec{x}) := \text{all } k\text{-simplices with incidence tuple } \vec{x}.$

Thus, parallel simplices = distinct elements of $d^{-1}(\vec{x})$.

Definition

We say that $B \in \{sSet_+^{\leqslant n}, sSet_+^{\leqslant n}, sSet_+, sSet\}$ is

- 0-simple if $|B(0)| \le 1$,
- k-simple if $\forall \vec{x}, |d^{-1}(\vec{x})| \leq 1$,

 \blacksquare 0-complete if $|B(0)| \ge 1$,

■ k-complete if $\forall \vec{x}$, $|d^{-1}(\vec{x})| \geqslant 1$,

■ k-exact if $\forall \vec{x}$, $|d^{-1}(\vec{x})| = 1$.

Example

0-complete ←⇒ nonempty graph

1-simple \iff no parallel edges (simple graph)

2-simple ←⇒ no parallel triangles

...

Separated elements in sSet (continued)

Theorem

Topology j^w on $D \in \{sSet_+^{\leqslant n}, sSet_+, sSet\}$ and object $B \in D$.

- 1. B is j^w -separated \iff B is k-simple for all k with $w_k = 1$.
- 2. B is j^w -complete \iff B is k-complete for all k with $w_k = 1$.
- 3. B is a j^w -sheaf \iff B is k-exact for all k with $w_k = 1$.
- If $D \in \{sSet_+, sSet\}$, k ranges over \mathbb{N} . Otherwise, k ranges over $\{0, \dots, n\}$.

⇒ New quasitoposes identified.

Conclusion

riting Toposes Proof LT-Topologies Bicoloured Simplicial sets **Conclusic** 0000 000000 000000 00 0000000 •00

Conclusion

```
Sets Graphs Presheaves
```

riting Toposes Proof LT-Topologies Bicoloured Simplicial sets **Conclusic** 0000 000000 000000 00 0000000 •00

Conclusion

Conclusion

Definition

$$\left.\begin{array}{c} \text{Sets} \\ \text{Graphs} \\ \dots \end{array}\right\} \text{Presheaves} \quad \Longrightarrow \quad \left.\begin{array}{c} \text{Fuzzy sets} \\ \text{Fuzzy graphs} \\ \dots \end{array}\right\} \text{Fuzzy Presheaves}$$

Theorem

- Fuzzy presheaves form (rm-adhesive) quasitoposes.
- Partially simple graphs form a quasitopos.
- For each bit string w, the following two categories are quasitoposes
 - \blacktriangleright the category of simplicial sets k-simple whenever $w_k = 1$,
 - \blacktriangleright the category of simplicial sets k-exact whenever $w_k = 1$,

riting Toposes Proof LT-Topologies Bicoloured Simplicial sets **Conclusic** 2000 000000 000000 00 000000 **0•**0

Future work

Future work:

- Define "fuzzy categories"? Are they quasitoposes?
- Obtain more quasitoposes via LT-topologies.
- Look at symmetric simplicial sets

Negation $\neg a$ is largest element with $a \land \neg a = \bot$.

Negation $\neg a$ is largest element with $a \land \neg a = \bot$.

Dually, conegation $\sim a$ is smallest element with $a \lor \sim a = \top$.

Negation $\neg a$ is largest element with $a \land \neg a = \bot$.

Dually, conegation $\sim a$ is smallest element with $a \lor \sim a = \top$.

In Graph: for
$$a \Rightarrow b \leftarrow c$$

Negation $\neg a$ is largest element with $a \land \neg a = \bot$.

Dually, conegation $\sim a$ is smallest element with $a \lor \sim a = \top$.

In Graph: for $a \Rightarrow b \leftarrow c$

 $\begin{array}{c}
A_0 \\
a \to b
\end{array}$

b

 $\boxed{a \rightarrow b \leftarrow c 5}$

$$\sim A_1 = A$$

 $\sim \sim A_0$

Negation $\neg a$ is largest element with $a \land \neg a = \bot$.

Dually, conegation $\sim a$ is smallest element with $a \lor \sim a = \top$.

In Graph: for
$$a \Rightarrow b \leftarrow c \Rightarrow$$

$$\begin{array}{c} A_0 & \sim A_0 & \sim A_0 \\ \hline a \rightarrow b & a \rightarrow b \leftarrow c \Rightarrow \end{array}$$

$$\begin{array}{c} A_0 & \sim A_0 & \sim A_0 \\ \hline a \rightarrow b & a \rightarrow b \leftarrow c \Rightarrow \end{array}$$

$$\begin{array}{c} A_1 & \sim A_1 = A & \sim A_1 \\ \hline a & b & a \Rightarrow b \leftarrow c \Rightarrow \end{array}$$

Conegation seem to be more of an interior operation.

Negation $\neg a$ is largest element with $a \land \neg a = \bot$.

Dually, conegation $\sim a$ is smallest element with $a \lor \sim a = \top$.

In Graph: for
$$a \Rightarrow b \leftarrow c$$

$$\begin{array}{c}
A_0 & \sim A_0 & \sim A_0 \\
\hline
a \to b & a \to b \\
\hline
A_1 & \sim A_1 = A & \sim A_1 \\
\hline
a & b & a \to b \\
\hline
\end{array}$$

Conegation seem to be more of an interior operation.

- Co-topology?
- Capture local falsehood (dual axioms)?
- Can we obtain other new quasitoposes?