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Rewriting

String rewriting

Term rewriting Graph rewriting

Rewrite
rule(s)

ab→ ba

a→ c
cb→ bc

f(x, g(y))→ f(x, x)
a

b c
→ b c

Example (Rewrite steps)

abbb babb bbab bbba

Definition (Two rewriting properties)

Termination Confluence

· → · → . . .→ · 6→
·

· ·
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Comparison

String rewriting:

Term rewriting: expressivity control

Graph rewriting:

⊆
⊆

Challenge: lift algorithms and results: string⇝ terms⇝ graphs.
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Graph rewriting

Which graphs?

Directed

• •
• •

Undirected

• •
• •

No loops

• •
• •

Hypergraph

• •
• •

Bipartite

• •

• •
•

Weighted

• •
• •

6
82

14

Electric

• •
• •

Bicoloured

• •
• •

2-dim
• •

• •
. . .

=⇒ Categorical framework

Categorical formalisms/algorithms use pushouts and pullbacks.
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Recent work: Overbeek, Endrullis, Rosset (ICGT 21, JLAMP’23)

Pullback-Pushout Plus (PBPO+)

rewrite rule

rewrite step GL → GR

L K R

L′ K′

GL GK
PB

GR
PO

PB

L x K x R x

L′ x y K′ x y
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Advantages of PBPO+: Relabelling

Label vertices and edges, e.g., with L = {a, b, c}.

Suppose complete lattice structure (L,∨,∧,>,⊥), e.g., ⊥
a
b
c

>

Definition
Fuzzy set (A, α) is a set A with a membership function α : A→ L.

Fuzzy graph (A, α) is a graph A with
{
αE : A(E)→ L
αV : A(V)→ L

Morphisms f : (A, α)→ (B, β) must not decrease membership: α ⩽ β ◦ f.

Relabelling = changing labels in rewrite step GL → GR. (7 in other formalisms)
L

x
⊥ K

x
⊥ R

x
c

GL
x
a

z
b GK

x
⊥

z
b GR

x
c

z
b

L′
x
>

z
> K′

x
⊥

z
>
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Motivations for toposes

Theorem (Overbeek, Endrullis, Rosset (ICGT’21, JLAMP’23))
■ In quasitoposes: PBPO+ subsumes DPO, SqPO, AGREE, PBPO.

(i.e., every DPO/SqPO/…rule has a corresponding PBPO+ rule that give the same rewrite steps)

■ In rm-adhesive quasitoposes: 1st categorical termination technique

Theorem (Behr, Harmer, Krivine (ICGT’21))
■ In quasitoposes: concurrency property in non-linear SqPO.

■ In rm-adhesive categories: concurrency property in non-linear DPO.
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Toposes

“Toposes are the categorical framework for studying structures which
behave like sets” (Borceux’95).

Definition
(Elementary) Toposes need

■ finite limits (and colimits)

■ (locally) cartesian closed

■ subobject classifier.

Definition
(Elementary) Quasitoposes need

■ finite limits and colimits

■ locally cartesian closed

■ regular-subobject classifier.

Grothendieck topos Elementary topos

Grothendieck quasitopos Elementary quasitopos

Example of toposes: presheaf categories.
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Presheaves

Definition
Presheaf on category I is a functor A : Iop → Set.
Presheaf morphism f : A⇒ B is a natural transformation.

Iop SetIop
Iop SetIop

i Set E2

E3 V

· · ·

directed
hypergraphs
(sizes preserved)

E
s
⇒
t
V Graph

(directed multi-)

E Vsym s
t

sym · sym = idE,
s · sym = t,
t · sym = s.

Undirected
graphs

E V
s1
...
sk

directed
k-uniform
hypergraphs

E V
s

t
refl

s · refl = t · refl = idV

Reflexive graphs
(or degenerate graphs)
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Yoneda embedding

Definition
The Yoneda embedding y : I→ SetIop is given by y(i) = I(−, i).

Idea: It gives the “building blocks” of presheaf categories.

Iop SetIop
y(V) y(E)
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Fuzzy presheaves

Given category I and functor L : Iop → Poset:

Definition (Poset version)
L-fuzzy presheaf (A, α) consist of

■ presheaf A : Iop → Set,
■ lax natural transformation α : incl · A⇒ L.

Iop Set

Poset

A

L incl
α

Morphism f : (A, α)→ (B, β) natural transformation with

αi ⩽ βifi, ∀i ∈ Iop

Iop i E
s
⇒
t
V E V

s1
s2
s3

…

Fuzzy presheaf
category

Fuzzy sets Fuzzy graphs Fuzzy 3-uniform
hypergraphs

…
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Presheaves properties

Let I be a small category.

Contribution

Set =⇒ Topos FuzzySet(L) (⋆)Stout’93
=⇒ Quasitopos

Graph =⇒ Topos

FuzzyGraph(L) =⇒ Quasitopos

. . . . . .

SetIop
=⇒ Topos

FuzzyPresheaf(I,L) (⋆⋆)
=⇒ Quasitopos

(⋆) if (L,∧,∨,⊥,>,⇒) complete Heyting algebra.

(⋆⋆) if L : Iop → CompHeytAlg.

Bonus: FuzzyPresheaf(I,L) is rm-adhesive.
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Finite limits (colimits case is dual)

Terminal object + Pullbacks e.g., Borceux Vol1
=⇒ all finite limits

Definition
An object 1 is terminal if ∀
object A, ∃! arrow A→ 1.

Definition (Product of objects A,B)
Product is object A× B with π1 : A× B→ A,
and π2 : A× B→ B, + a universal property.

Terminal 1 A× B

Set {·} {(a, b) | a ∈ A, b ∈ B}

× =
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Subobject classifier

Definition
Subobject classifier is True : 1→ Ω with

A ⊆ B
subobjects

⇐⇒ χA : B→ Ω
characteristic function

A 1

B Ω

!

m True

χA

⌟

■ Set : Ω ..= {0, 1}

A ⊆ B ⇐⇒ χA : b 7→
{ 1, if b ∈ A
0, otherwise

■ Graph : Ω ..= 0 10
t

(s,t)

1

s

a b

A

⊆ a b c

B

⇐⇒ χA :



a, b 7→ 1
c 7→ 0
→ 7→ 1−→

→ 7→ (s,t)−−→
← 7→ t−→
⟲ 7→ 0−→

■ Presheaves: Ω(i) = Sub(y(i)) is the set of all subpresheaves/sieves of
y(i). (generalisation of sets and graphs)
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Regular-subobject classifier

■ FuzzySet(L): 7 However, Ω ..= {0⊤, 1⊤} classifies regular fuzzy subsets.

{ax} ⊆ {a0.4, b0.6}
is regular

⇐⇒ x = 0.4

Lemma
Regular-subobject classifier fuzzy presheaves:

Ω of presheaves + all elements full membership.
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Cartesian closed

Definition
For objects A,B of a category, an exponential object is an object BA s.t.

C× A→ B Currying⇐⇒
(adjunction)

C→ BA.

■ Sets: BA ..= {functions A→ B}.

■ Graphs: BA ..=

{BA(V) ..= {graph hom. {·} × A→ B}
BA(E) ..= {graph hom. {s→ t} × A→ B}.

■ Presheaves: BA(i) ..= {morphisms y(i)× A→ B}.

■ Fuzzy sets: (B, β)(A,α) = (BA, θ)

θ(f : A→ B) ..=
∧
a∈A

(α(a)⇒ βf(a)) .

Lemma
Fuzzy presheaves have exponential objects.
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Locally cartesian closed

Cartesian closedness stable under categorical equivalence. Hence:

Lemma (e.g., Awodey’05)
Presheaf(I) is locally cartesian closed because

Presheaf(I)/
D ' Presheaf(el(D))

Lemma
FuzzyPresheaf(I,L) is locally cartesian closed because

FuzzyPresheaf(I,L)/
(D, δ) ' FuzzyPresheaf(el(D, δ), L̃)
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Adhesivity

Definition (Simplified)
Category is
■ adhesive: if m mono, bottom PO, back PBs:

front PBs ⇐⇒ top PO
■ rm-adhesive: if m reg. mono, :

front PBs ⇐⇒ top PO
■ rm-quasiadhesive: if :

front PBs =⇒ top PO

F G

E H

B C

A D
m

Theorem

Topos Adhesive

Rm− adhesive

Quasitopos Rm− quasiadhesive

Lack, Sobociński ’06

Garner, Lack ’12

if regular subobjects closed under
binary union Johnstone et al. ’07
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Logic with Ω

Toposes have an internal logic (Goldblatt’06, McLarty’92)

Definition
Truth values are 1→ Ω (global elements).

Set : 0, 1 Graph : 00 , 1(s,t) , 11

Logical connectives:

False ..= χ
0

!↣1

¬ ..= χFalse

∧ ..= χ⟨True,True⟩

⇒ ..= χEq(π1,∧)→Ω×Ω

∨ ..= χ[⟨TrueΩ,idΩ⟩,⟨idΩ,TrueΩ⟩]

=⇒ Ω is a Heyting algebra.

(for object X, then TrueX ..= X !−→1 True−−→Ω means true in context X)
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Lawvere-Tierney Topologies

LT-topology / operator / modality talks about “locally truth”.

■ Generalises “topology on a set” 7

■ Generalises Grothendieck topology 3

Definition
A LT-topology on a topos is a morphism j : Ω→ Ω satisfying

1. j ◦ True = True (P =⇒ locally P)

2. j ◦ j = j (locally locally P = locally P)

3. j ◦ ∧ = ∧ ◦ (j× j) (locally P ∧ Q =⇒ locally P∧ locally Q)

Induces closure operator on subobjects: A0 ↣ A: χA0↣A
..= j ◦ χA0↣A.

Subobject A0 ↣ A is dense if A0 = A.
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Examples of topologies

Topology j Closure A0 ⊆ A Dense object

Trivial TrueΩ adds everything all

Discrete idΩ adds nothing only A

Closed for (s, t) (− ∨ (s, t)) adds all vertices if A0(E) = A(E)

Dbl. negation ¬¬ adds all valid edges if A0(V) = A(V)

Set

Graph





y(V) = Ω(V) = Sub(y(V)) =
0 1

y(E) = Ω(E) = Sub(y(E)) =
0

s

t

(s, t) s→ t
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Examples of topologies

Topology j Closure A0 ⊆ A Dense object

Trivial TrueΩ adds everything all

Discrete idΩ adds nothing only A

Closed for (s, t) (− ∨ (s, t)) adds all vertices if A0(E) = A(E)

Dbl. negation ¬¬ adds all valid edges if A0(V) = A(V)

Set

Graph




Illustration of ¬¬-topology on Graph: for a b c

A

a b

A0

c

¬A0

a b

¬¬A0
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Separated elements

Hausdorff space B: any A f−→ B determined by values on any dense A0 ⊆ A.

Definition
Topology j, object B, arbitrary j-dense m : A0 ↣ A and arbitrary f : A0 → B.
Count the number of factorisations g : A→ B of f through m (∀A0, A, f):

■ B is separated if #g ⩽ 1,
■ B is complete if #g ⩾ 1,
■ B is a sheaf if #g = 1.

A0

A B

f
m

g

Lemma (Johnstone ’79)
For a topology,

■ separated elements form a quasitopos.

■ sheaves form a quasitopos.
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Separated elements and sheaves in Set,Graph, FuzzyGraph(L)

Top. Closure A0 ⊆ A Dense object Sep. elem. Sheaves

Triv. (adds everything) all subterminal
objects

terminal
objects

Dis. (adds nothing) only A (all) all

Closed (adds all vertices) if A0(E) = A(E) ∅, · ·

¬¬ (adds all valid edges) if A0(V) = A(V) simple graphs complete graphs

Corollary (Vigna’97)
Simple graphs form a quasitopos.

Lemma
Similarly, those also form quasitoposes:

■ Simple reflexive graphs

■ Simple undirected graphs

■ Simple k-uniform hypergraphs

■ …
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Bicoloured
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Bicoloured graphs

Iop SetIop

E Vs
t Graph

E V E′s
t t′

s′ Bicoloured graphs
(→ and→)

0 10
t

(s,t)

1
s

ΩGraph

0 1

0

0′

t

t′

st
1

s′t′

1′

s

s′

ΩBiColGraph
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E Vs
t Graph

E V E′s
t t′
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0 10
t
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1
s
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0 1

0

0′

t

t′
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1

s′t′
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s

s′
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Topologies on BiColGraph

Lemma
4 topologies on Graph =⇒ 8 topologies on BiColGraph.

j1 j2 j3 j4 j5 j6 j7 j8
on E disc. ¬¬ disc. ¬¬ closed closed triv. triv.
on E′ disc. disc. ¬¬ ¬¬ closed triv. closed triv.

j2-separated el. = blue-simple graphs.
j3-separated el. = red-simple graphs.

}
=⇒ Partially simple graphs.

Corollary
Partially simple graphs form a quasitopos.
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Simplicial sets



Rewriting Toposes Proof LT-Topologies Bicoloured Simplicial sets Conclusion

Simplicial sets

Simplicial sets = graphs with triangles (2-dim), tetrahedra (3-dim), etc.
Definition

sSet = Simplicial sets = Set∆op with

∆op = 0 1 2 · · ·s00
d10

d11 s10

s11
d20

d22

d21 ···
···

···

dni = face maps, sni = degeneracy maps satisfy simplicial identities

sSet+ = Semi-simplicial sets: only di maps.
sSet⩽n = n-dimensional simplicial sets: only 0, . . . ,n.
sSet⩽n+ = n-dimensional semi-simplicial sets: both.
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Simplicial identities

∆ is defined with totally ordered sets. ∆op is defined with graphs.

Map di omits vertex at position i: d1(v0, v1) = v0.
Map si duplicates vertex at position i: s1(v0, v1) = (v0, v1, v1).

Simplicial identities:



dn−1
i dnj = dn−1

j−1 d
n
i if i < j

sn+1i snj = sn+1j+1 s
n
i if i ⩽ j

dn+1i snj =


sn−1
j−1 d

n
i if i < j

idn if i = j or i = j+ 1
sn−1
j dni−1 if i > j+ 1

1

0

2
(0,2)

(0,1)

(1,2)(0,1,2)

d1d2(0, 1, 2) = d1(0, 1) = 0 = d1(0, 2) = d1d1(0, 1, 2)
s0s0(0) = s0(0, 0) = (0, 0, 0) = s1(0, 0) = s1s0(0)

d0s1(1, 2) = d0(1, 2, 2) = (2, 2) = s0(2) = s0d0(1, 2)
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sSet⩽n+ : Intuition

Case sSet⩽n+ . Inductively: at each dimension, is the new structure added?

Ω(0) =

j0 j1

Ω(1) =

jw00 jw01

Ω(2) =

jw0w10
jw0w11

Theorem
Topologies on sSet⩽n+ : exactly the unique extensions of some jw.

Discrete topology: w = 0 . . . 0. Trivial topology: w = 1 . . . 1.
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sSet⩽n: adding degeneracies

Fact (easy proof requires folklore knowledge about a left Kan extension)

Ω⩽n
+ (k) ∼= Ω⩽n(k)

Example:

Ω⩽1
+ (1) = ∼= = Ω⩽1(1)

In sSet⩽1+ = Graph: 4 topologies j00, j01, j10, j11.
In sSet⩽1 = ReflGraph: 3 topologies j00, j01, j11

Indeed, j10 does not commute with the degeneracy map Ω⩽1(refl):

Ω⩽1(1) Ω⩽1(1) ∅ · · 6= · ·

Ω⩽1(0) Ω⩽1(0) ∅ ·

j101

Ω⩽1(refl) Ω⩽1(refl)

j100

�⟲

Theorem
Topologies on sSet⩽n are of the form jw for w = 0m1n+1−m.
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sSet+ and sSet

General case = extend the n-dimensional case

Theorem
For D ∈ {sSet+, sSet} and w ∈ {0, 1}ω (sSet: only 0ω or 0m1ω allowed):

jw = (jw0...wnn )n∈N : Ω→ Ω is a topology on D.

Moreover, every topology on D arises this way.
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Separated elements in sSet

Notation
For all simplicial sets B, and x⃗ = (xk, . . . , x0) ∈ B(k− 1)k+1,

d−1
(⃗x) ..= all k-simplices with incidence tuple x⃗.

Thus, parallel simplices = distinct elements of d−1(⃗x).

Definition
We say that B ∈ {sSet⩽n+ , sSet⩽n, sSet+, sSet} is
■ 0-simple if |B(0)| ⩽ 1,

■ 0-complete if |B(0)| ⩾ 1,

■ 0-exact if B(0) = {·},

■ k-simple if ∀ x⃗, |d−1
(⃗x)| ⩽ 1,

■ k-complete if ∀ x⃗, |d−1
(⃗x)| ⩾ 1,

■ k-exact if ∀ x⃗, |d−1
(⃗x)| = 1.

Example
0-complete ⇐⇒ nonempty graph
1-simple ⇐⇒ no parallel edges (simple graph)
2-simple ⇐⇒ no parallel triangles
…
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2-simple ⇐⇒ no parallel triangles
…
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Separated elements in sSet (continued)

Theorem

Topology jw on D ∈ {sSet⩽n+ , sSet⩽n, sSet+, sSet} and object B ∈ D.

1. B is jw-separated ⇐⇒ B is k-simple for all k with wk = 1.

2. B is jw-complete ⇐⇒ B is k-complete for all k with wk = 1.

3. B is a jw-sheaf ⇐⇒ B is k-exact for all k with wk = 1.

If D ∈ {sSet+, sSet}, k ranges over N. Otherwise, k ranges over {0, . . . ,n}.

=⇒ New quasitoposes identified.



Conclusion
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Conclusion

Definition

Sets
Graphs

. . .

Presheaves

=⇒
Fuzzy sets

Fuzzy graphs
. . .

Fuzzy Presheaves

Theorem
■ Fuzzy presheaves form (rm-adhesive) quasitoposes.

■ Partially simple graphs form a quasitopos.
■ For each bit string w, the following two categories are quasitoposes

▶ the category of simplicial sets k-simple whenever wk = 1,

▶ the category of simplicial sets k-exact whenever wk = 1,
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Future work

Future work:

■ Define “fuzzy categories”? Are they quasitoposes?

■ Obtain more quasitoposes via LT-topologies.

■ Look at symmetric simplicial sets
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Open question: Conegation

Negation ¬a is largest element with a ∧ ¬a = ⊥.

Dually, conegation ∼ a is smallest element with a ∨ ∼ a = >.

In Graph: for a b c

A

a b

A0

a b c

∼ A0

a b

∼∼ A0

a b

A1

a b c

∼ A1 = A ∼∼ A1

Conegation seem to be more of an interior operation.

■ Co-topology?

■ Capture local falsehood (dual axioms)?

■ Can we obtain other new quasitoposes?
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